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The approach of dispersed droplets in molten quiescent polymer blends from an initial distance comparable with 
their radii was analysed. It was shown that a substantial flattening of the droplets appears only at distances 
comparable with the critical distance for rupture of the matrix film between droplets. The time of coalescence is 
controlled by the film drainage between practically undeformed spherical droplets. The effect of viscoelasticity on 
the rate of coalescence was studied for the Maxwell model of the matrix. It was shown that the rate of coalescence 
increases with increasing relaxation time of the matrix. The theory of coalescence caused by Brownian motion or 
molecular forces predicts rates of coalescence which are comparable with those determined experimentally. 
Neglecting synergism between the Brownian motion and molecular forces, approximations used in the description 
of droplet distribution and neglecting the simultaneous approach of three or more droplets still limit the applicability 
of the theory for a quantitative prediction of coalescence rate. © 1998 Elsevier Science Ltd. All rights reserved. 

( K e y w o r d s :  molten polymer blends; droplet coalescence; film drainage) 

INTRODUCTION 

In addition to their composition and mixing conditions, the 
phase structure of polymer blends is also controlled by their 
thermal history. Substantial coarsening of the phase 
structure was observed for a number of polymer blends 
kept for a certain time in the molten state at rest 1-8. 
The coarsening is usually explained as a consequence 
either of coalescence of the dispersed droplets ~-s or 
Ostwald ripening 5-7. It was shown that the Smoluchowski 
theory of coalescence 9 and its modification for systems 
with high viscosity of the matrix 2 predict a very small 
effect for blends with original droplet radii higher than 
0.5/zm and a typical value of matrix viscosity 2. This is in 
strong disagreement with experimental results for many 
systems 2-4. Recently, coarsening of the phase structure in 
hydrogenated polybutadiene/linear polyethylene blends was 
described by the theory of Ostwald ripening 6'7. However, 
pronounced growth of the droplets in blends with medium 
and high interfacial tension and original droplet radius 
higher than 0.5 #m cannot be explained even by the Ostwald 
ripening theory. 

Very recently, a theory of coalescence in blends with a 
higher content of the dispersed phase was proposed ~°. The 
theory is based on the assumption that the film drainage 
between droplets, and not the approach of distant droplets, 
controls the rate of coalescence. Coalescence rates were 
calculated for commonly used models with mobile, partially 
mobile and immobile interfaces |1. It was shown, however, 
that these models do not describe coalescence in molten 
quiescent polymer blends in an adequate manner because 
they predict larger rates of coalescence for weaker driving 

ao force . Therefore, film drainage between the droplets in 
systems where coalescence is caused by weak forces, such 
as Brownian motion and molecular forces, in molten 

* To w h o m  cor respondence  should be addressed 

quiescent polymer blends, is analysed in this paper. Besides 
the relationships for Newtonian droplets in a Newtonian 
matrix, the effect of matrix elasticity on the course of 
coalescence was also studied. It should be mentioned that 
film drainage between liquid droplets is a very complex 
process ~1- ~ . Even analysis of its individual parts frequently 
leads to equations which are self-consistent or can be solved 
only approximately or by numerical methods. Because the 
main aim of this paper is understanding the overall 
coalescence process in quiescent polymer blends, we must 
use several quite rough approximations in this study. 

THEORY 

Interaction of droplets in a Newtonian matrix 

In the literature, the course of coalescence is described in 
the following manner 1°'12. After approaching at a certain 
distance, the tops of the droplets are quickly deformed and a 
fiat film is formed between them. During this process, the 
width of the film is constant, but mass centres of the droplets 
approach as a consequence of their deformation. The 
process is followed by film thinning from the initial 
thickness h0 to the critical thickness he, where film rupture 
occurs. During film thinning, the radii of flattened parts of 
the droplets are almost constant. This description of the 
process is based on the assumption that the driving force for 
the coalescence is independent of the distance between the 
droplets. For the velocity of film thinning, approximate 
relationships for systems with mobile, partially mobile and 
immobile interface were derived I i. These relationships are 
mutually inconsistent and there are no transitions among 
them if parameters of the system are changed. 

1o It was shown in our preceding paper that most droplets 
have their nearest neighbour at a distance comparable to (or 
shorter than) their radii. At these distances, molecular and 
Brownian forces are comparable 1°. The following equation 
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is valid for van der Waals '  force Fw (lo) 

3 2 A R  6 A R  

F w = 3h2(2R + h)3(4R ÷ h) 2 -- 12h2 (1) 

where A is the Hamaker  constant, R is the droplet radius and 
h is the distance between droplets. It is difficult to describe 
correctly film drainage between droplets the approach of 
which is caused by Brownian motion. However,  we believe 
that the magnitude of the effect can be roughly estimated if 
the force, FB, is defined as the ratio of the energy of 
Brownian motion and the distance h between the droplets. 
FB can be estimated as 1° 

k T  
FB = 2-h (2) 

where k is the Boltzmann constant and T is the absolute 
temperature. 

The rate of  coalescence is controlled by the time 
necessary for film thinning from h0 to he. First, we try to 
estimate the radius, rf, of the plane-parallel film formed 
between droplets after their deformation. Usually, rf is 
determined from the balance between pressure caused 
by external force and Laplace pressure inside the 
droplet 11,15 

F 2or 
~r~ = R- (3) 

where a is the interfacial tension. It follows from equation 
(3) that rf can be expressed as 

rf  : (4)  

Substitution for F from equation (1) into equation (4) and 
choosin_gz0the values R = 1 #m, a = 0.005 N m -l and 
A = 10- J leads to rf = 0.33 nm for h = h0 = 0.5/xm and 
rf = 33 nm for h = hc = 5 nm. Substitution for F from 
equation (2) and choosing T = 473 K, the same R and 
o lead to rf = 0.46 nm at h0 = 0.5/~m and rf = 4.6 nm at 
hc = 5 nm. It can be seen that rf << R during the whole 
process of  coalescence. Only for h not much larger than 
hc (5nm seems to be a lower estimation of hc) and 
van der Waals '  forces, is the condition rf > h, which is 
commonly used for derivation of equations describing the 

I112 rate of  film drainage between droplets ' , fulfilled. For 
this reason, it seems that the decisive contribution to the 
coalescence time is given by the approach of practically 
undeformed spheres. For this part of  the droplets' approach, 
film drainage between undeformable spheres is a more 
adequate model than film drainage between flattened 
surfaces. 

Coalescence of viscous undeformable droplets was 
studied by Zhang and Davis 14. A general analytical 
relationship between the velocity of  the droplets'  approach 
and the driving force for coalescence is not available. For a 
long distance between the droplets, i.e. large h, the 
following equation is valid 

3r/d/r/m ÷ 2 d h  
F = - 7rr/mR (5) 

~d/'qm ÷ 1 dt 

where ~m and rid are viscosities of the matrix and the 
dispersed phase, respectively, and - d h / d t  is the velocity 
of  the droplets'  approach. For droplets which are very 
close to each other, lubrication theory can be used for 

analysis of the dependence of the velocity of  their approach 
on the driving force 14'16. Use of lubrication theory leads 
to the equation 14A6 

1 dh 2F 
h - ~ g ( m ) -  37rr/mR2 (6) 

The function g(m) can be approximated by the following 
PadS-type expression 14 

1 + 0.402m 
g ( m ) =  1 + 1 .711m+0.461m 2 (7) 

where m is defined as 

m r/d \ 2h.] (8) 

It should be mentioned that slightly different numerical 
coefficients in expression for g(m) are used in refs. 14 and 16. 

For m ---* 0 (fully immobile interface), g(m) = 1, and 
equation (6) transforms into the well-known equation for 
rigid spheres11 

1 dh 2F 

h d t -  37r~/m R2 (9) 

For m >> 1 (fully mobile interface), equation (6) transforms 
into the equation 

0.402x/~ 1 dh 2F 
- ( l O )  

0 .461  h 1/2 dt 37r~]d R3/2 

As will be shown below, the starting distance between a 
droplet and its nearest neighbour, h0, in typical polymer 
blends (~o _> 0.2) is substantially shorter than R/2. Therefore, 
we believe that for most polymer blends the decisive con- 
tribution to the coalescence time is given by the approach of 
droplets from those distances for which equation (6) is 
applicable. For blends with a lower content of  the dispersed 
phase, the trajectory of the droplets should be divided into 
parts for which the relevant equations for long, medium 
and short distances between droplets are applied 14. It 
should be mentioned that for rigid spheres (with immobile 
interface), velocities calculated from equations (5) and (9) 
are equal for h = R/2. The value R/2 is used in the litera- 
ture 3'rv for the distance at which film drainage starts. Gen- 
erally, the limits of applicability of  equation (6) are 
dependent on the ratios 2h/R and ~Td/~m. This is discussed 
in more detail in ref. 16. Substitution from equations (1), (7) 
and (8) into equation (6) and its integration from h0 to hc 
leads to the following equation for the coalescence time 
(time of film drainage), tc, in the case of coalescence 
caused by van der Waals '  forces 

187r~/mRGv tc -- (11) 
A 

where 

Gv = 0.5(h 2 - hZc) - a ,pR ' /Z (h  3/2 - h 3/2) ÷ a2pZR(ho - he) 

- -  3~3. .1 /2  1/2 - -A3p  Ix (n o - h  c ) + A 4 p 4 R  2 

× In 2h° + 1.711V/2pRl/Zh I/2 ÷ 0.461p2R 

2hc + 1.711 X/~pRl/Zhlc/2 + 0.461p2R 

- Asp4R 2 In (4h°1/2 + 0"948pRI/Z)(4hlc/2 + 3"892pRt/2) 
1/2 1/2 112 (4h~/2 ÷ 3.892pR )(4hc + 0.948pR ) 

(12) 
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where A 1 to A 5 are numerical constants and 

p ~ 'r/m/~/d (13) 

It should be pointed out that for large p, the value of Gv is 
extremely sensitive to the respective values of A i and their 
round-off errors, which can lead to quite false values of Gv. 
In this case numerical integration of equation (6) leads to 
better results. 

When the approach of droplets is caused by Brownian 
motion [equation (2) is used for F], substitution from 
equations (2), (7) and (8) into equation (6) and its 
integration leads to the following equation for tc 

3 7r~TmR2-G B (14)  to- h : ~  

where 

GB = ho hc _ BlpRt/2 (h l/2 1/2 _ _ h c ) + B2p2R 

X In 2ho + 1.711 V/2pRl/2h~/2 + 0.461p2R 

2hc + 1.711 X/~pRl/2h~/2 + 0.461p2R 

-- B3p2R (In 4hl/2 + 0"948pR1/2 
- 4hl/2 + 3.892pR 1/2 

4h~/2 + 0.948pR1/2"~ 
- In 4h~/2 ~ j  (15) 

where B j, B 2 and B3 are constants. As in the case of Gv, 
the function GB is for large p extremely sensitive to values 
of the constants Bi. For h0 >> hc and p2R >> h~, t~ values 
given by equations (l 1) and (14) are independent of hc but 
are strongly dependent on the value of h0. On the contrary, 
coalescence times of deformable droplets with immobile 
and partially mobile interfaces are dependent on h~ and 
not on h0 l°'n. t~ for systems with a fully mobile interface 
is dependent on the ratio ho/hc. 

Determination of h0 is a necessary step for the description 
of coalescence in a system of undeformable spheres. For a 
system of monodisperse spheres which uniformly increase 
their volume during the coalescence (the model used in the 
preceding paperJ°), h0 is the distance of a sphere from 
its nearest neighbour. The distribution function and 
average value of the distance between a reference sphere 
and its nearest neighbour for a system of impenetrable 

~8 monodisperse spheres were derived by Torquato et a l . .  If 
we define 

h 0 = 1 - 2R (16) 

where l is the distance between the centres of the nearest- 
neighbour spheres, it follows from equation (6.11) in 18 

f ~  { 8~(1 +,p). 3 1) h0=2R ,exp - ~ - - ~ ) T t x  - 

6~p2(3 + ~')(x 2 - 1) 12~p3 " js"] 
+ ~ 7¢ , )3  ( 1 - ~ ( x -  1) dx (17) 

where h 0 is the average value of h0. The integral in equation 
(17) must be calculated numerically. For large ~o, however, 
the following analytical asymptotic expression was found ~8 

h o = R  (1 -- ~P)3 (18) 
6¢,(2 - ¢,) 

This expression is relatively accurate for ~p --> 0.2. Since our 
theory is oriented on the description of coalescence in 

systems with higher contents of the dispersed phase, h 0 
given by equation (12) will be substituted for h0 during 
further calculations. 

In the preceding paper 1° an equation for change in the 
droplet radius per unit time was derived. For a blend where 
all droplets take part in coalescence, 

dR R 
(19) 

dt 3tc 

Substitution from equations (11) and (18) into equation 
(19) leads to the following equation for a system with van 
der Waals' forces: 

dR A 1 
dt 547rr /mHv R2 (20) 

where Hv can be expressed as 

l f~  f 2h2+O.402V/2p R'/2h3/2 
Hv = ~-~ 2 h +  1.711X/~pRll2h 1/2 + 0.461pZR 

or  

dh 

(21a) 

O V = 0 . 5 f  2 - A ipf  3/2 q'- A2p2f - A3p3f j/2 

2f  + 1.711 X/~pf j/2 + 0.461p 2 
+ A4p 4 In 

0.461p 2 

15.568f j/2 + 3.69p 
-- Asp 4 In 3.792fl/2 + 3.69p (21 b) 

The function f is defined as 

(l - so) 3 
f = (22) 

6~p(2 - ~o) 

It should be pointed out that for large p, calculation of Hv 
from equation (21a) by numerical methods seems to be 
more advantageous than using equation (21b). 

Solution of equation (20) leads to the equation: 

R3 = R° 3 + a t (23) 
187r~/mHv 

where R0 is the droplet radius at t = 0. 
For coalescence induced by the Brownian motion and 

neglecting hc, the equation for the time derivative of R can 
be derived by substitution from equations (14) and (18) into 
equation (19): 

dR kT 1 
dt - 97rr/mH B R 2 (24) 

where 

l f ~  f 2h+O'402X/~pRI/2h'/2 dh (25a) 
HB = ~ 2h + 1.711X/~pRl/Zh 1/2 + 0.461pZR 

or  

HB = f -- B jp f  I/2 + Bzp 2 In 2f + 1.711V/2pf j/2 + 0.461p 2 
0.46 lp 2 

0.948 p - ]  - 3ff92 p J } 

(25b) 

Similarly to the previous case, using equation (25b) is not 
suitable for large values of p. 
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Equation (24) has the solution: 

kT 
R 3 = R 3 + - - t  (26) 

3rrr/mHB 

Generally, Hv and HB are functions of the ratio ~m/~d and of 
volume fraction of the dispersed phase. For p ---, 0 (immo- 
bile interface), the equations Hv = 0.5f 2 and HB = f are 
valid. Therefore, rate of coalescence is independent of the 
viscosity of the dispersed phase. In the case of the fully 
mobile interface (p --* ~), equations (21) and (25) pass to 
the equations 

H v = 0.49 f5/2 
P 

H B --  0.83 9 / 2  
P 

It can be seen that for systems with a mobile interface, the 
rate of coalescence is a function of ~a but it is independent 
of ~m- 

The effect of  elastic properties of  the matrix 
For the drag force, FD, acting on the particle, which 

moves with velocity fi in a quiescent medium with 
viscoelastic properties described by using the Maxwell 
model, the following equation was derivedr9'2°: 

d~'D 
FD = ~'U -- Tm - -  (27) 

dt 

where ~" is the frictional resistance of the particle and 7" m is 
the relaxation time of the Maxwell model of viscoelastic 
matrix. In the description of the Brownian motion, Stasiak 
and Cohen 2° assumed that inertial forces are negligible (this 
assumption is usually fulfilled for motion of small particles 
in a highly viscous medium) and, therefore, the following 
equations are valid: 

b'B + Fo = 0 (28) 

dFB dFD ^ 
d---7- + T = O (29) 

Further calculations are based on the assumption that 
equations (28) and (29) are valid for any driving force of 
the particle motion and that equation (27) is also valid if ~" is 
determined not only by the frictional resistance of the 
medium but also by hydrodynamic interactions of 
the particles. Hydrodynamic interaction is calculated in the 
same manner as for a Newtonian liquid. This approximation 
should not lead to a qualitative change of the results 
because, in the limit of very weak hydrodynamic inter- 
action, a correct expression for F D should transform to 
equation (27). In this case, equation (6) for the velocity of 
approach of undeformable spheres can be substituted by the 
equation: 

h -~g(m) = 3~r~mR 2 F + rm ~ (30) 

It follows from equation (30) that the velocity of the 
droplets' approach is quicker in a viscoelastic matrix than 
in a Newtonian one with the same viscosity if the driving 
force of coalescence increases with decreasing distance 
between the droplets. For F decreasing with decreasing h, 
the velocity of the droplets' approach is lower in a visco- 
elastic matrix than in a related Newtonian one. This result is 

in agreement with the intuitive idea that transient viscosity, 
defined as the ratio of the shear stress to the shear rate, 
controls the droplet motion. It is well known that after a 
step increase in the shear rate (caused by an external 
force), the shear stress in a viscoelastic liquid increases 
only gradually to the steady value. Therefore, the transient 
viscosity is lower than the steady one. Substitution for F 
from equation (1) into equation (30) leads to the following 
equation for coalescence induced by van der Waals' forces: 

A'r m "~ dh A 
- g(m) 97r~-mmRh2"/I dt 187r~mRh (31) 

On solving equation (31), the expression for tc was obtained: 

18~'~TmRGv h0 tc - -  - 2r m In - -  (32) 
A h c 

For tc of coalescence induced by the Brownian motion, 
the following equation was derived by substitution from 
equation (2) into equation (30) and its solution: 

37rr/m R2 
In ~ (33) tc -- k ~ - G B  - Zm 

For systems with a lower content of the dispersed phase, i.e. 
larger distances between droplets at the origin of the 
coalescence, equation (30) should be substituted by an 
equation in which hydrodynamic interaction between 
droplets is described in a relevant manner. 

It can be seen from comparison of equations (32) and (33) 
with related equations (11) and (14) that coalescence is 
quicker in a viscoelastic matrix than in a Newtonian one 
with the same zero shear viscosity. The decrease of tc due to 
matrix elasticity is independent of the frictional resistance, 
but is dependent on the driving force of coalescence. The 
correction of the coalescence time is higher for steeper 
growth of the driving force with decreasing distance 
between the droplets. For a driving force of coalescence 
independent of the droplet distance, tc is independent of the 
elastic properties of the matrix. 

The equation describing the time dependence of the 
droplet radius in a system where coalescence is induced by 
van der Waals' forces can be derived by substitution from 
equation (32) into equation (9): 

h~ fR o A R 3 Arm In 2 = R3o Arm In 2 + t 
67r~/mHv 67r~/mHv ~ 187rr/mH v 

(34) 

By using equations (19) and (33), the equation for R in a 
system with the Brownian-motion-induced coalescence can 
be derived in an analogous manner: 

R3 kTT" m in 2 f ~  = R3 kTrm in 2 fRo + kT - - t  
27r~/mHB 2r~mHB hc 3r~/mHB 

(35) 

DISCUSSION 

If the assumption is made that the coalescence is controlled 
by the approach of undeformed droplets in a Newtonian 
matrix, the time dependence of the droplets' radius can be 
expressed as 

R 3 = R 3 + Kt (36) 

where K is independent of R, R0 and t. Equation (36) is valid 
for any driving force of coalescence [cf. equations (23) and 
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(26)]. Also, the Smoluchowski theory of coalescence 9, the 
theory of Ostwald ripening 6'7 and the theory of film drainage 
between flattened droplets in systems with a partially mobile 
interface and gravity driving force, and with an immobile 
interface and van der Waals' driving force j°, lead to an 
equation similar to equation (36). Moreover, a modification 
of the Smoluchowski theory for systems with high viscosity 
of the matrix 2 gives the equation: 

R 3/2 = R 3/2 -Jr- K t  I/2 ( 3 7 )  

It can be seen that dependences (36) and (37) can be hardly 
distinguished experimentally, especially for lower R0, 
because experimental data show considerable scatter 2 8. It 
is clear that no conclusions about the coarsening mechanism 
in polymer blends can be made from the shape of the 
dependence of R on t only. 

If the approach of undeformed spheres is the decisive step 
in coalescence, the rate of coalescence increases with 
growing volume fraction of the dispersed phase and 
decreases with increasing viscosities of the matrix and 
dispersed phase. An increase in the rate of coalescence with 

decreasing ~/d in systems with a given r/m is pronounced for 
systems with ~/d comparable to or lower than ~/,n 
(cf. Figure 1). It is independent explicitly of interfacial 
tension. These conclusions are valid for coalescence 
induced by both van der Waals' forces and Brownian 
motion. However, interfacial tension is related to the 
effective Hamaker constant A in the blend, which affects 
the rate of coalescence induced by van der Waals' forces. In 
this case, the rate of coalescence increases with increasing 
interfacial tension. It follows from equations (34) and 
(35) [or equations (32) and (33)] that the rate of coalescence 
in a viscoelastic matrix increases with the relaxation time 
of the Maxwell model of the matrix. The growth of 
the coalescence rate with increasing volume fraction of 
the dispersed phase and decreasing viscosity of the matrix is 
in qualitative agreement with previous experimental 
results 5-8. For blends with partially crosslinked inclusions, 
a decrease in the coalescence rate with increasing degree 
of crosslinking (i.e. viscosity of the dispersed phase) 
was found 3. Conclusive results from experimental 
studies on the effect of interfacial tension or elastic 
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Figu re  1 The functions Hv(P)/Hv(O) and HB(p)/HB(O) of the ratio of viscosities p = ~/mhld- Curves: (a) and (b) Hv(p)lHv(O); (c) and (d) HB(p)/HB(O); (a) 
and (c) ¢ = 0.2; (b) and (d) ¢ = 0.5 
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Figure 2 The time dependence of the droplet radius R(t) for the 
van der Waals'  driving force of coalescence (r m = 0 s, p = 1). Curves: (a) 
and (b) R0 = 0. I #m; (c) and (d) R~ = 0.5 ~m; (a) and (c) ~p = 0.2; (b) and 
(d) ~ = 0.5 
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Figure 3 The time dependence of the droplet radius R(t) for the 
Brownian driving force of coalescence (to1 = 0s ,  p = 1). Curves: (a) 
and (b) R0 = 0.1 /zm; (c) and (d) R~ = 0.5 t~m; (a) and (c) ~p = 0.2; (b) and 
(d) ~ = 0.5 

properties of the matrix on coalescence are not available in 
literature. 

If values ~m = 103 Pa s, ~/m/r/d = 1, A = 1 0 - 2 ° J  and 
T = 473 K are used for calculation of the time dependence 
of R according to equations (23) and (26), a strong increase 
in R during several minutes is predicted for systems with a 
higher ~o (cf. Figures 2 and 3). The increase in rate of 
coalescence with ~o is much stronger in systems where van 
tier Waals' force is the driving force of coalescence. For 
systems with a moderate content of the dispersed phase 
(¢ = 0.2), the increase in R during several tens of minutes 
is substantial for systems with low R0 (R0 = 0.1 #m) and 
quite small for systems with a larger R0 (R0 = 0.5/~m). It 
can be seen from Figure 4 that for rm equal to several tens 
of seconds (a usual value for polymers with l"]m = 103 Pa s), 
the preceding conclusions are also valid if equations (32) 
and (33) for systems with a viscoelastic matrix are 
used. For large rm and small R0, equations (32) and 
(33) have non-monotonic solutions. This is probably 
caused by approximations used for the description of the 
problem. 

In derivation of the relationships for the dependence of 
droplet radius on time [equations (23), (26), (34) and (35)], a 
number of approximations are used. Equations (23) and 
(34) are based on the assumption that the driving force for 
coalescence is a van der Waals' interaction only. On the 
other hand, in derivation of equations (26) and (35), it is 
assumed that the coalescence is caused by the Brownian 
motion only. Moreover, description of the Brownian motion 
by using the force FB is a very rough approximation. As in 
polymer blends, forces Fw and FB are comparable if the 

distance between droplets lies between h0 and hc, and a 
correct theory of coalescence should consider the Brownian 
motion and molecular forces simultaneously. It should 
be pointed out that the theories of Danov et al. ~2 and 
Zhang and Davis 14 considering the Brownian motion and 
molecular forces cannot be applied straightforwardly to 
polymer blends. These theories are based on the assumption 
that a steady diffusion flux is established in the system. The 
assumption is not fulfilled for polymer blends z. A certain 
underestimation of the coalescence rate can be caused by the 
approximation used in the derivation of h0. In our 
calculation, we substituted the real distribution of h0 by its 
average value. If we assume that average tc should be used 
• • - 2  • - 2 m equation (19), h 0 instead of (h0) should be used 
for coalescence induced by van der Waals' force. If i c  I 
is substituted in equation (19), ho 2 and ho j instead of 
(h0) - 2 and (h0) - l should be used. The difference between a 
certain moment of the distribution and the related power of 
/% can be pronounced. It is not quite clear which approach 
is more consistent with the basic approximate assumption 
of a uniform increase in the sphere volume 1° during 
coalescence. Therefore, relationships between various 
moments of the nearest-neighbour distribution should be 
the object of further research. We believe that the important 
reason for the possible discrepancy between theory and 
experimental results can be neglecting the simultaneous 
approach of three or more droplets. Since coalescence 
was studied experimentally for blends with high contents of 
the dispersed phase, the contribution of simultaneous 
interactions of three or more droplets is probably 
fundamental. 
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Figure 4 The influence of the relaxation time rm on the time dependence 
of the droplet radius R(t). R0 = 0.5/zm, ~ = 0.35, p = 1. Curves: (a), (b) 
and (c) van der Waals' driving force; (d), (e) and (f) Brownian driving 
force; (a) and (d) rm = 0 s; (b) ~',n = 40 s; (c) ~'m = 80 S; (e) rm = 500 s; (f) 
rm = 1000 s 

CONCLUSIONS 

In quiescent molten polymer blends, non-negligible 
flattening of coalescing droplets appears only at the 
distances which are comparable to the critical distance, he, 
of film rupture. Therefore, the coalescence time is 
controlled by the time of the approach of undeformed 
droplets from the initial distance, h0 (shorter than the droplet 
radius), to the distance he. The contributions of Brownian 
motion and molecular forces to the droplets' approach are 
comparable. The approach of the droplets is affected by 
their hydrodynamic interactions. 

Coalescence is quicker in blends with a viscoelastic 
matrix than in blends with a Newtonian matrix of the same 

viscosity. The coalescence time decreases with increasing 
relaxation time of the Maxwell model of the matrix. 

The equations, derived for the time dependence of droplet 
radius with the assumption that coalescence is caused by 
molecular forces or Brownian motion, predict a reasonable 
order of the rate of coalescence and its dependence on the 
parameters of the system. The approximations used in the 
description of the droplets' distribution, the neglecting of 
the synergism between Brownian motion and molecular 
forces and neglecting the simultaneous coalescence of three 
and more droplets should be the subjects of further 
investigation. 
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